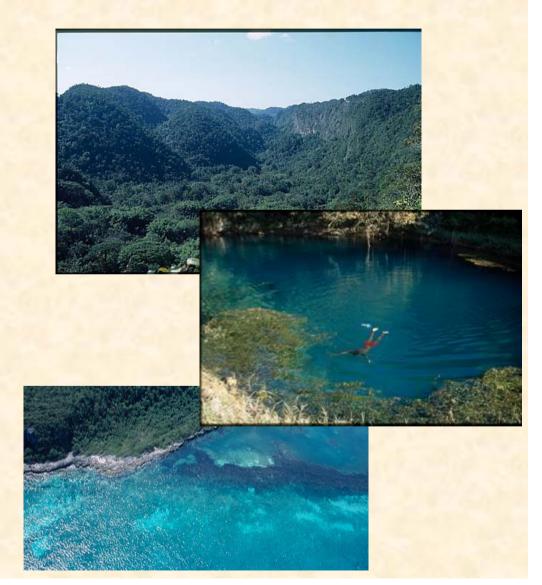


## Jamaica Ecoregional Plan



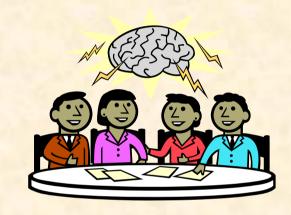



The Nature Conservancy Jamaica Programme June 2006

www.nature.org



## **JERP Goal**


The main areas and activities necessary for the conservation of Jamaica's freshwater, marine and terrestrial biodiversity based on the best available data.





## What is Ecoregional Planning (ERP)?

- ERP is an iterative sciencebased planning activity aimed at developing shared goals, and strategies for organisations involved in biodiversity conservation.
- Jamaica ERP (JERP) is led by TNC-J and supported by a multidisciplinary group of local and international scientists, technicians and conservation practitioners.







## **Brief History of JERP**

- Jamaica Ecoregional Planning started in 2003 as part of Caribbean planning project.
- Jamaica and Puerto Rico were selected as pilot projects.
- The Jamaican conservation community wanted a more detailed ecoregional analysis.
- Freshwater, Marine and Terrestrial analyses conducted on separate but parallel tracks for integration in May and June 2006.

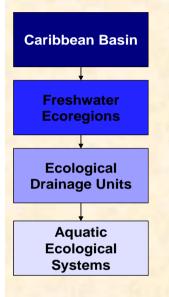


## **JERP** objectives

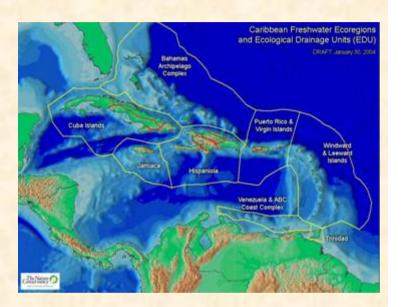
- 1. To design a network of conservation areas that will conserve the diversity of species, communities and ecosystems in Jamaica.
- To guide TNC Jamaica conservation priorities and actions in the short to medium term.
- To provide a scientific basis and methodology for island-wide conservation planning.



Generally follows Geography of Hope (TNC 2002)


- 1. Compile and review existing information on biodiversity, human activities, protected areas and conservation projects.
- 2. Establish a classification framework for Jamaica's biodiversity.
- 3. Select and map conservation targets: ecosystems, habitats and species.
- 4. Develop conservation goals: The amount and distribution of biodiversity to be conserved.
- 5. Conduct threats assessment: Status of human activities that impact biodiversity.
- 6. Assess ecological integrity of conservation targets
- 7. Review existing Protected Area Network.
- 8. Design representative conservation areas network
- 9. Develop conservation strategies




- 1. Compile and review existing information on biodiversity, human activities, protected areas and conservation projects.
- 2. Establish a classification framework for Jamaica's biodiversity.
- 3. Select and map conservation targets: ecosystems, habitats and species.
- 4. Develop conservation goals: The amount and distribution of biodiversity to be conserved.
- 5. Conduct threats assessment: Status of human activities that impact biodiversity.
- 6. Assess ecological integrity of conservation targets
- 7. Review existing Protected Area Network.
- 8. Design representative conservation areas network
- 9. Develop conservation strategies



#### **Freshwater Classification Framework**



- Jamaica freshwater ecoregion was stratified into two EDUs: 1) the Blue Mountains and 2) the Western Limestone Complex.
- Ecological Drainage Units are ecological entities defined as:
  - groups of watersheds with similar zoogeographic histories and similar patterns of physiography, drainage density, hydrologic characteristics, and connectivity.



#### **Western Limestone Complex:**

- •Low drainage densities,
- •High hydrological connectivity between basins
- Predominantly karst limestone hydrogeology
- •Longer than those in the east with better developed floodplains and associated wetlands
- Significant underground drainage



#### **Blue Mountains EDU:**

- •high drainage densities,
- •low hydrologic connectivity between basins
- •a volcanic/metamorphic hydrogeology
- •Rel. short fast-flowing rivers
- •High-altitude headwaters



#### **Marine Stratification**

Caribbean ecoregion

Regional marine planning areas: Greater Antilles/NE Caribbean

Jamaica ecoregion

Jamaica Marine Stratification Units (MSUs)

Conservation target occurences





Jamaica Marine Stratification Units (MSUs)

Adapted from Sullivan & Bustamante 1999



Determined by oceanographic, geophysical and environmental conditions.

**Northern MSU** – narrow island shelf, deep drop-off, more exposed shoreline.

**Southern MSU** – wide island shelf with gradual drop-off, more sheltered coast.

**Eastern MSU** – most exposed to eastern tradewinds, narrowing shelf.

**Pedro Bank** – very large offshore bank system with circulation and currents independent of coastal conditions.



#### **Terrestrial Stratification**

- Two stratification units were defined based on geology, topography and climate, biogeography:
  - ➤ Blue Mountains (eastern) Stratification Unit
  - > Western Limestone Stratification Unit

N.B. This followed the Freshwater stratification units.





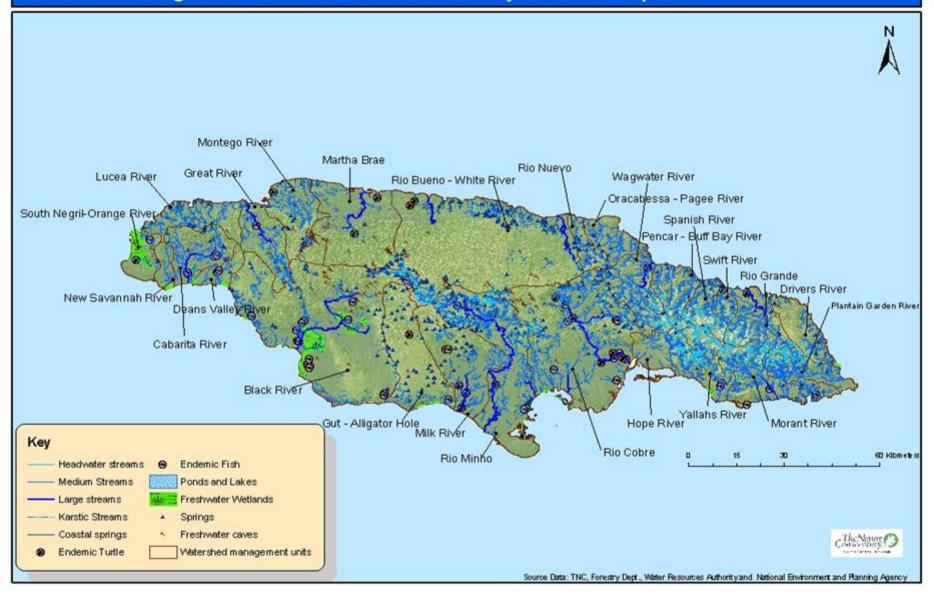
- 1. Compile and review existing information on biodiversity, human activities, protected areas and conservation projects.
- 2. Establish a classification framework for Jamaica's biodiversity.
- 3. Select and map conservation targets: ecosystems, habitats and species.
- 4. Develop conservation goals: The amount and distribution of biodiversity to be conserved.
- 5. Conduct threats assessment: Status of human activities that impact biodiversity.
- 6. Assess ecological integrity of conservation targets
- 7. Review existing Protected Area Network.
- 8. Design representative conservation areas network
- 9. Develop conservation strategies



## **Conservation Targets**

Mapped the distribution of freshwater, marine and terrestrial biodiversity elements or conservation targets (ecosystems, communities and species) across Jamaica. 2 levels were used:

- Coarse-Filter- ecosystems, and communities. Designed to represent common and widespread species.
- Fine-Filter- single species, guilds and communities with special requirements. Ensures that endemic, endangered or other unique species are priorities for conservation.








|                        | Freshwater Conservation Targets                                                                |  |  |  |
|------------------------|------------------------------------------------------------------------------------------------|--|--|--|
| Blue                   | Small high altitude streams                                                                    |  |  |  |
| Mountain<br>EDU        | Med-sized, low altitude streams                                                                |  |  |  |
| LDO                    | Large, low-altitude streams                                                                    |  |  |  |
|                        | Small coastal springs and streams                                                              |  |  |  |
| Contract of the second | Freshwater wetlands                                                                            |  |  |  |
| 75.00                  | Permanent and ephemeral ponds                                                                  |  |  |  |
|                        | Springs                                                                                        |  |  |  |
|                        | Freshwater caves                                                                               |  |  |  |
| West/Central           | Small, high altitude non-karstic streams                                                       |  |  |  |
| EDU                    | Large low-altitude streams                                                                     |  |  |  |
| 100                    | Karstic aquatic systems- freshwater caves, springs and karstic streams                         |  |  |  |
|                        | Small coastal springs and streams                                                              |  |  |  |
| 1                      | Permanent and ephemeral ponds and lakes.                                                       |  |  |  |
|                        | Freshwater wetlands                                                                            |  |  |  |
| 1                      | Med-sized, low altitude, non karstic, streams                                                  |  |  |  |
| Fine Filter            | Endemic Fish: Gambusia melapleura, Gambusia wrayi, Limia melanogaster, Cyprinodon jamaicensis. |  |  |  |
|                        | Endemic turtle: Pseudemys terrapen                                                             |  |  |  |

## JAMAICA ECOREGIONAL PLAN Freshwater Target Distribution: freshwater ecosystems and species





| SAVING THE LAST GREAT PLAC                                      | SES ON EARTH            |                                  |                                                                                                                                                                                               |  |  |  |
|-----------------------------------------------------------------|-------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| JAMAICA ECOREGIONAL PLANNING (JERP) MARINE CONSERVATION TARGETS |                         |                                  |                                                                                                                                                                                               |  |  |  |
|                                                                 |                         | Marine Stratification Unit (MSU) | Major data sources or references used for mapping                                                                                                                                             |  |  |  |
| Coarse                                                          | Sandy shores            | N, S, E*                         | JA Coastal Atlas 1999, Greater Caribbean Ecoregional Assessment 2004,<br>South Coast Atlas 1999, Expert review                                                                                |  |  |  |
| Coarse                                                          | Rocky shores            | N, S, E                          | JA Coastal Atlas 1999, GCERA 2004, JA Country Environmental Profile 1987, South Coast Atlas 1999, Expert review                                                                               |  |  |  |
| Coarse                                                          | Mangroves               | N, S, E                          | Forestry Dept. Landuse Map 1999, Alleng 1990, JA Country Environmental Profile 1987, Jamaica's Coastal Resources: A Reconnaissance Report (USAID 1995), South Coast Atlas 1999, Expert review |  |  |  |
| Coarse                                                          | Estuarine areas         | N, S, E                          | Jamaica's Coastal Resources: A Reconnaissance Report (USAID 1995), IKONOS satellite imagery, Expert review                                                                                    |  |  |  |
| Coarse                                                          | Seagrass                | N, S, E, P                       | Millenium Mapping 2004-06, JA Coastal Atlas 1999, South Coast Atlas 1999, Expert review                                                                                                       |  |  |  |
| Coarse                                                          | Coral reef              | N, S, E, P                       | Millenium Mapping 2004-06, JA Coastal Atlas 1999, South Coast Atlas 1999, JA Country Environmental Profile 1987, Expert review                                                                |  |  |  |
| Coarse                                                          | Soft bottom communities | N, S, E                          | Millenium Mapping 2004-06, JA Coastal Atlas 1999, South Coast Atlas 1999, Expert review                                                                                                       |  |  |  |
| Coarse                                                          | Cays                    | N, S, E, P                       | Millenium Mapping 2004-06, Topography maps (50k), British Admiralty Nautical Charts, JA Country Environmental Profile 1987, Expert review                                                     |  |  |  |

Seabird nesting and roosting Coarse N, S, E, P Haynes, 1987; Downer and Sutton, 1991; Haynes-Sutton, 1997; Expert review areas Overwintering shorebird areas N, S, E, P Based on A. Sutton field research, Expert review Coarse WIDECAST report (in-draft), NEPA GIS dataset based on compilation of field surveys between 1991 and 1995, Expert review Turtle nesting beaches N, S, E, P Coarse Manatee Mgmt. Plan - Brown 1993, NEPA GIS dataset based on compilation of field surveys between 1982 and 1993 (Fairbairn and Haynes, 1982; Strong, Manatees N, S, E et. al. 1991), Expert review Fine \*N – Northern, S – Southern, E – Eastern, P – Pedro Bank

review

S, E, P

Offshore banks

Coarse

Millenium Mapping 2004-06, South Coast Atlas 1999, Munro 1983, Expert

# JAMAICA ECOREGIONAL PLANNING MARINE **CONSERVATION TARGETS** DRAFT Nature Conservancy February 2006



- 1. Compile and review existing information on biodiversity, human activities, protected areas and conservation projects.
- 2. Establish a classification framework for Jamaica's biodiversity.
- 3. Select and map conservation targets: ecosystems, habitats and species.
- 4. Develop conservation goals: The amount and distribution of biodiversity to be conserved.
- 5. Conduct threats assessment: Status of human activities that impact biodiversity.
- 6. Assess ecological integrity of conservation targets
- 7. Review existing Protected Area Network.
- 8. Design representative conservation areas network
- 9. Develop conservation strategies



## **Conservation Goals**

Goals refer to the amount and distribution of targets that we want to conserve.

- ➤ **Distribution**: Ensures that more than one example of a target is conserved. In this case, at least one occurrence per stratification unit: EDU or MSU.
- Amount: Expressed as a percentage of the total.
  E.g. 10 % of freshwater wetland distribution.

Goals are the yardstick by which we measure progress and effectiveness.



# **Setting conservation goals**

| Goal scheme | Description                                                                |
|-------------|----------------------------------------------------------------------------|
| 1           | Minimum goal of 10% of all targets (CBD, TNC 2015)                         |
| 2           | Goal of 20% (IUCN, World Parks Congress 2003 and GoH/TNC recommendations)  |
| 3           | Adaptive goals based on other literature and status of individual targets. |



## Goal calculation example

| EDU                      | Target name                                        | code | Total Amount<br>(km, Ha, or # of<br>occurences) | 10%     | 20%     | 30%     | Adaptive |
|--------------------------|----------------------------------------------------|------|-------------------------------------------------|---------|---------|---------|----------|
|                          | High altitude, headwater streams                   | 630  | 584.92                                          | 58.49   | 116.98  | 175.47  | 87.74    |
|                          | Medium-sized streams                               | 631  | 2238.73                                         | 223.87  | 447.75  | 671.62  | 223.87   |
|                          | Large low-altitude streams                         | 632  | 38.22                                           | 3.82    | 7.64    | 11.47   | 19.11    |
| Blue Mountain            | Coastal springs and streams                        | 633  | 138.20                                          | 13.82   | 27.64   | 41.46   | 34.55    |
| EDU                      | Freshwater wetlands                                | 634  | 220.94                                          | 22.09   | 44.19   | 66.28   | 110.47   |
|                          | Lakes and ponds                                    | 635  | 43.07                                           | 4.31    | 8.61    | 12.92   | 10.77    |
|                          | Springs                                            | 646  | 109                                             | 11      | 22      | 33      | 11       |
|                          | Freshwater caves                                   | 647  | 9                                               | 1       | 2       | 3       | 5        |
| 200                      | Small high altitude headwater streams: non karstic | 636  | 147.81                                          | 14.78   | 29.56   | 44.34   | 36.95    |
|                          | Large low-altitude streams                         | 637  | 418.76                                          | 41.88   | 83.75   | 125.63  | 125.63   |
|                          | Karstic aquatic systems:<br>Freshwater caves       | 638  | 214                                             | 21      | 43      | 64      | 21       |
| 10.0                     | Karstic aquatic systems: Springs                   | 639  | 417                                             | 42      | 83      | 125     | 42       |
| Western<br>Limestone EDU | Karstic aquatic systems: Karstic streams           | 640  | 1505.35                                         | 150.54  | 301.07  | 451.61  | 150.54   |
|                          | Coastal springs and streams                        | 641  | 166.33                                          | 16.63   | 33.27   | 49.90   | 49.90    |
|                          | Lakes and ponds                                    | 642  | 801.79                                          | 80.18   | 160.36  | 240.54  | 200.45   |
|                          | Freshwater wetlands                                | 643  | 12893.59                                        | 1289.36 | 2578.72 | 3868.08 | 3223.40  |
|                          | Medium-sized streams: non karstic                  | 645  | 1850.54                                         | 185.05  | 370.11  | 555.16  | 185.05   |



- 1. Compile and review existing information on biodiversity, human activities, protected areas and conservation projects.
- 2. Establish a classification framework for Jamaica's biodiversity.
- 3. Select and map conservation targets: ecosystems, habitats and species.
- 4. Develop conservation goals: The amount and distribution of biodiversity to be conserved.
- 5. Conduct threats assessment: Status of human activities that impact biodiversity.
- 6. Assess ecological integrity of conservation targets
- 7. Review existing Protected Area Network.
- 8. Design representative conservation areas network
- 9. Develop conservation strategies



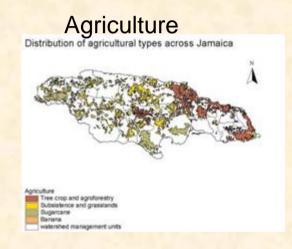
## **Threats Assessment**

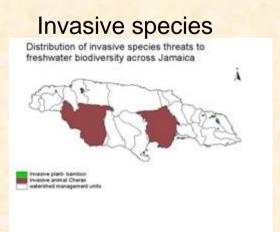
Threats defined as human and human-mediated activities that degrade conservation targets.

- Identify and map threat distribution
- Evaluate threat intensity
- Incorporate into cost surface
- Prioritise critical threats- # of targets affected, and intensity

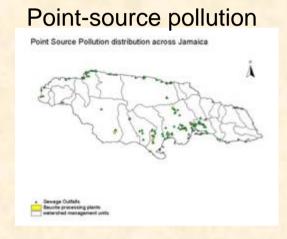


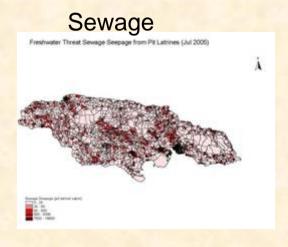






# Threats to FW biodiversity

| Threat class (IUCN)    | Activity                                                                                    |  |  |
|------------------------|---------------------------------------------------------------------------------------------|--|--|
| Agriculture            | Crop cultivation:                                                                           |  |  |
|                        | Aquaculture                                                                                 |  |  |
|                        | Livestock farming                                                                           |  |  |
| Point source pollution | Bauxite processing                                                                          |  |  |
|                        | Sewage                                                                                      |  |  |
|                        | Factory waste                                                                               |  |  |
|                        | Landfill effluent seepage                                                                   |  |  |
| Infrastructure         | Human settlement                                                                            |  |  |
| die Start Bie          | Dams                                                                                        |  |  |
|                        | Roads                                                                                       |  |  |
| Extraction             | Water abstraction (excessive)                                                               |  |  |
|                        | Overfishing :fish (tilapia, mullet, etc), crustaceans (shrimp, crayfish), bussu (neritidae) |  |  |
|                        | Sand mining (in rivers)                                                                     |  |  |
| Limestone quarrying    |                                                                                             |  |  |
|                        | Bauxite mining                                                                              |  |  |
| Invasive species       | Invasive animals and plants                                                                 |  |  |
| Habitat Destruction    | Filling in and clearing of wetlands                                                         |  |  |





## **FW Threat Distributions**

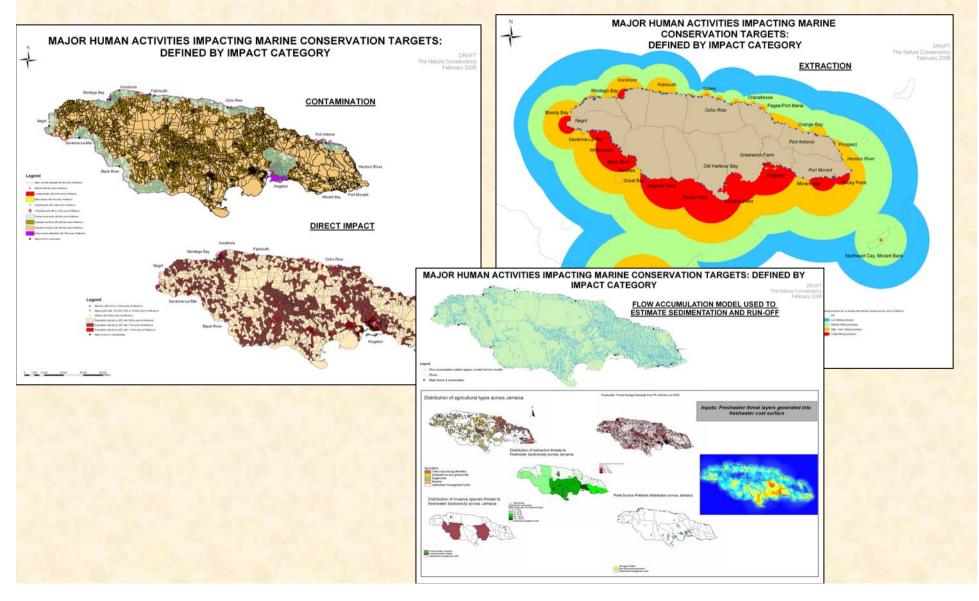












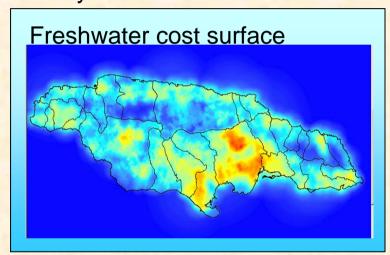

#### **Threats to marine biodiversity**

| Threats category                     | Primary human/human-mediated activities impacting marine conservation targets                                                | Surrogate data used to estimate and map impact of human/human-mediated activities - Cost Surface model                                                  |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Direct impact                        | Careless boating practices (anchorings, groundings, seagrass scars, etc)                                                     | Marinas, ports                                                                                                                                          |  |
| Climate change                       | Climate change (associated increase in water temps, sea level rise)                                                          | not mapped                                                                                                                                              |  |
| Direct impact<br>Contamination       | Coastal development/construction (includes land conversion)                                                                  | Population density, resort areas and hotels, ports, marinas                                                                                             |  |
| Sedimentation<br>Contamination       | Deforestation & physical deterioration of watershed basins                                                                   | Agricultural landuse                                                                                                                                    |  |
| Direct impact                        | Dredging                                                                                                                     | Marinas, ports                                                                                                                                          |  |
| Direct impact                        | Extraction of material from mangroves                                                                                        | Population density                                                                                                                                      |  |
| Extraction                           | Hunting/poaching of animals and/or eggs (reptiles, birds)                                                                    | not mapped                                                                                                                                              |  |
| Direct impact                        | Hydrological alterations/disruptions (eg. groundwater extraction, irrigation, channelization, damming of rivers and streams) | Dams, Agricultural landuse, water extraction                                                                                                            |  |
| Contamination                        | Invasives/domestic animals                                                                                                   | General Perna viridis distribution (a Pacific oyster)                                                                                                   |  |
| Direct impact                        | Irresponsible/careless diving practices                                                                                      | not mapped                                                                                                                                              |  |
| Direct impact                        | Irresponsible/careless fishing practices/gear (eg. dynamite, dragging of nets, abandoned traps)                              | not mapped                                                                                                                                              |  |
| Sedimentation & run-off Contaminatio | Land run-off (including agricultural, sewage and industrial discharge)                                                       | Coastal industrial areas, agricultural landuse, population density, bauxite processing plants, groundwater contamination, sewage outfalls, pit latrines |  |



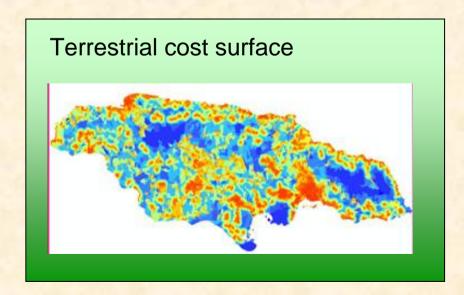
## **Marine Threat Distributions**






- 1. Compile and review existing information on biodiversity, human activities, protected areas and conservation projects.
- 2. Establish a classification framework for Jamaica's biodiversity.
- 3. Select and map conservation targets: ecosystems, habitats and species.
- 4. Develop conservation goals: The amount and distribution of biodiversity to be conserved.
- 5. Conduct threats assessment: Status of human activities that impact biodiversity.
- 6. Assess ecological integrity of conservation targets.
- 7. Review existing Protected Area Network.
- 8. Design representative conservation areas network
- 9. Develop conservation strategies




## **Cost Surfaces**

Target occurrences were screened by incorporating cost surfaces in the GIS analyses to follow.



Marine cost surface without fishing

- The cost surface is a map of the sum impact of human activities on biodiversity, that is, a human footprint. Main inputs:
  - > Threat distribution
  - > Threat intensity
  - Area of influence of threat





# **Cost Surface inputs\***

| Activity                                                      | Intensity | Extent of influence (km) | Effects                                                                                                                                                               |
|---------------------------------------------------------------|-----------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Banana<br>plantation                                          | œ         | 5                        | Very intensive use of pesticides and fertilisers, also generates solid waste, some evidence of bioaccumulation in aquatic systems, increased runoff and sedimentation |
| Urbanised area                                                | 6         | 5                        | Impervious surfaces, disrupt flow regime, reduce base flow, pollutants introduced directly into aquatic systems.                                                      |
| Excessive water abstraction (50-75% of basin total extracted) | 4         | 0.1                      | Can disrupt instream flow requirements and hydrology, in extreme cases may disrupt upstream/ downstream linkages like dams                                            |

<sup>\*</sup>Extracted from cost surface input table

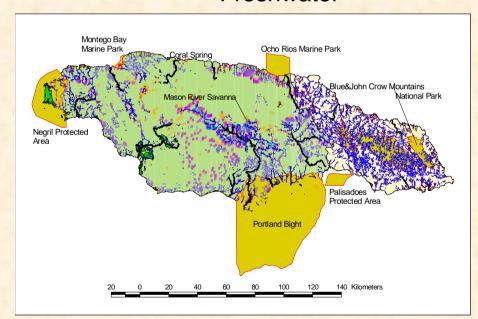


- 1. Compile and review existing information on biodiversity, human activities, protected areas and conservation projects.
- 2. Establish a classification framework for Jamaica's biodiversity.
- 3. Select and map conservation targets: ecosystems, habitats and species.
- 4. Develop conservation goals: The amount and distribution of biodiversity to be conserved.
- 5. Conduct threats assessment: Status of human activities that impact biodiversity.
- 6. Assess ecological integrity of conservation targets
- 7. Review existing Protected Area Network.
- 8. Design representative conservation areas network
- 9. Develop conservation strategies



## **Protected Area Analysis**

Examines the effectiveness of current Protected Area system and highlighted the gaps.


- Representation Gaps: Are the PAs protecting Jamaica's biodiversity adequately?
- Ecological Gaps: Are the Pas in the right place? How can they be better connected to preserve large scale ecological processes?
- Management Gaps: Are the managements systems in place to protect biodiversity in existing Pas?



## **Gap Analysis**

The current PA network was overlaid with the conservation target distributions to determine how much of each target is currently protected.

#### Freshwater



#### Marine







#### **Freshwater Gap Results**

- Only 6 freshwater habitats are adequately represented (i.e. >10% of their distribution) in the protected area network.)
- 5 habitats (large rivers, wetlands, ponds and caves in the east and high altitude streams in the west) are completely unprotected
- The PA network does not protect ecological connectivity. (i.e. No complete river systems protected.)

| Target                               | Percentage of target protected | KEY- % represented |
|--------------------------------------|--------------------------------|--------------------|
| Eastern high altitude headwater      | 04 00/                         | >20%               |
| Streams Western freshwater wetlands  | 61.8%                          | 10-20%             |
| Western ponds and lakes              | 18.7%                          | 0.400/             |
| Eastern medium-sized streams         | 13.8%                          | 0-10%              |
| western large rivers                 | 10.9%                          | protection         |
| Western medium-sized streams streams | 10.5%                          | IUCN               |
| Eastern springs                      | 7.3%                           | BENCHMARK          |
| Western coastal springs              | 6.3%                           |                    |
| western springs                      | 6.2%                           |                    |
| Western freshwater caves             | 5.6%                           |                    |
| Western karstic streams              | 4.4%                           |                    |
| eastern coastal springs              | 0.5%                           |                    |
| eastern large rivers                 | 0.0%                           |                    |
| eastern wetlands                     | 0.0%                           | CRITICAL           |
| eastern ponds and lakes              | 0.0%                           | FRESHWATER         |
| western_high altitude streams        | 0.0%                           | HABITATS           |
| eastern freshwater caves             | 0.0%                           |                    |



## **Marine Gap Results**

- 8 of 13 targets have > 50% protection
- Eastern targets are very poorly represented in the PA system
  - ➤ 15% (2 of 13) of Eastern Jamaica targets have 1 - 2% to of their distribution within PAs
  - > 80% (9 of 13) have no protection at all
- Pedro Bank MSU has no protection
- Offshore bank targets in the eastern and southern MSUs have no protection
- N. Jamaica Seabird Nesting and Roosting areas have no coverage

|   | JERP Marine Conservation Target Name                 | %<br>distribution<br>within<br>declared<br>PAs |
|---|------------------------------------------------------|------------------------------------------------|
|   | Eastern Jamaica Rocky<br>Shore                       | 0                                              |
|   | Eastern Jamaica Seagrass                             | 0                                              |
|   | Eastern Jamaica Seabird Nesting & Roosting Areas     | 0                                              |
|   | Eastern Jamaica Soft Bottom Communities              | 0                                              |
|   | Eastern Jamaica Manatee<br>Sightings                 | 0                                              |
|   | Eastern Jamaica Cays                                 | 0                                              |
| ) | Eastern Jamaica Offshore Banks                       | 0                                              |
|   | Northern Jamaica Seabird<br>Nesting & Roosting Areas | 0                                              |
|   | Pedro Bank Seagrass                                  | 0                                              |
|   | Pedro Bank Coral & Coral Reefs                       | 0                                              |



- 1. Compile and review existing information on biodiversity, human activities, protected areas and conservation projects.
- 2. Establish a classification framework for Jamaica's biodiversity.
- 3. Select and map conservation targets: ecosystems, habitats and species.
- 4. Develop conservation goals: The amount and distribution of biodiversity to be conserved.
- 5. Conduct threats assessment: Status of human activities that impact biodiversity.
- 6. Assess ecological integrity of conservation targets
- 7. Review existing Protected Area Network.
- 8. Design representative conservation areas network
- 9. Develop conservation strategies



## **Conservation Area Portfolio**

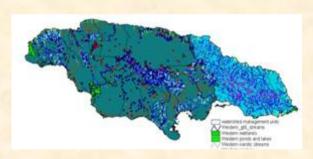
#### Conservation area modelling:

Optimal networks of conservation areas based on the distribution of conservation targets and the selected conservation goals were designed. The following tools were used:

- 1. ESRI GIS-based tools Marxan and SPOT software, and
- 2. Non-computerised "common sense" models



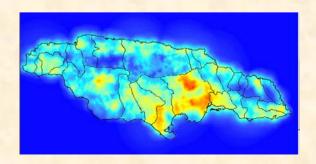
## **Marxan and SPOT modelling**


Main Inputs:
Targets

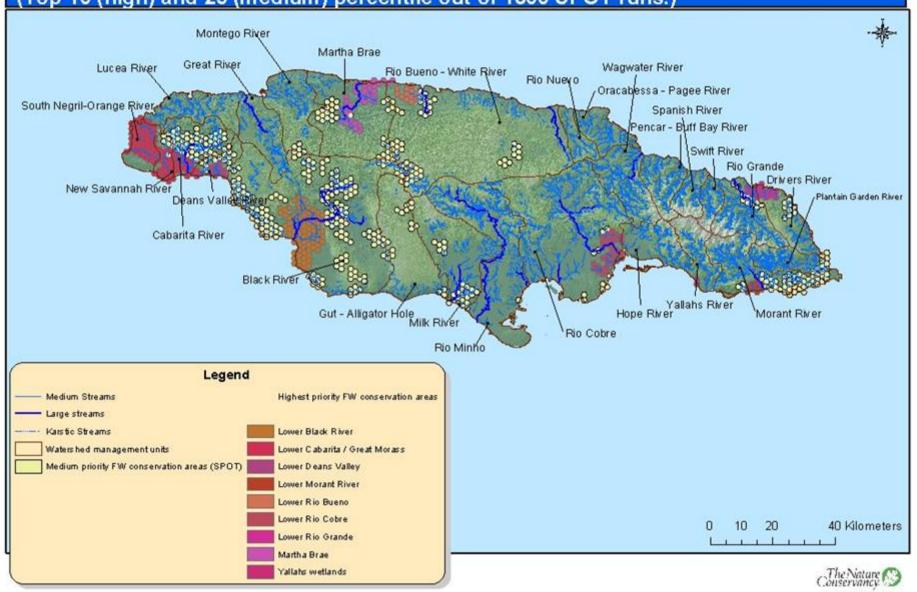
+

**Conservation Goals** 

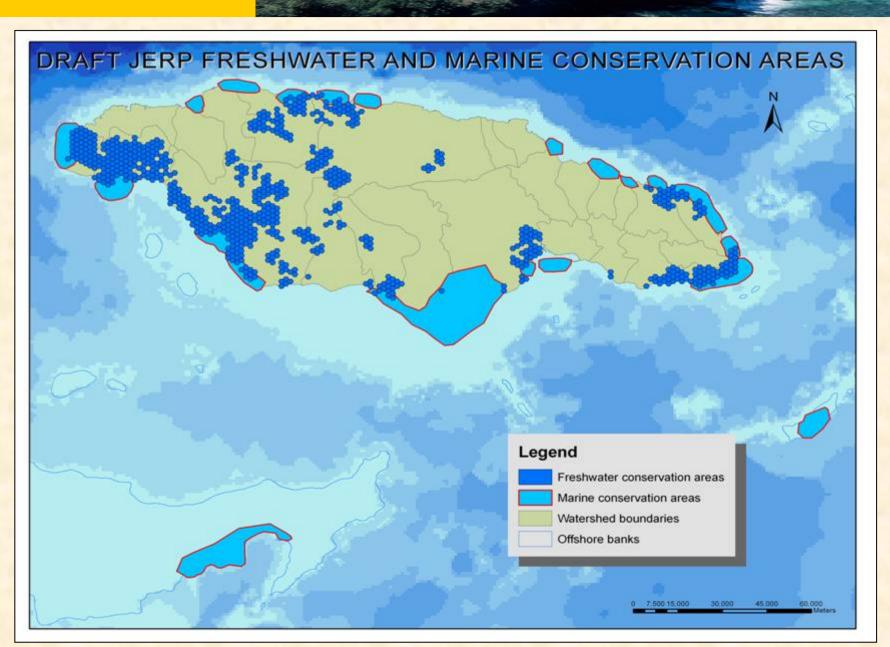
+


**Cost Surface** 




+

10%


+



## JAMAICA ECOREGIONAL PLAN Core Freshwater Conservation Areas: (Top 10 (high) and 25 (medium) percentile out of 1800 SPOT runs.)









## **ERP Planning Framework**

- 1. Compile and review existing information on biodiversity, human activities, protected areas and conservation projects.
- 2. Establish a classification framework for Jamaica's biodiversity.
- 3. Select and map conservation targets: ecosystems, habitats and species.
- 4. Develop conservation goals: The amount and distribution of biodiversity to be conserved.
- 5. Conduct threats assessment: Status of human activities that impact biodiversity.
- 6. Assess ecological integrity of conservation targets
- 7. Review existing Protected Area Network.
- 3. Design representative conservation areas network
- 9. Develop conservation strategies



## **Strategy Framework**

The results of ERP Analyses (eg. Viability analysis, threats analysis, gap analysis) were used to design ecoregional conservation objectives and strategies.



## Main freshwater JERP findings

#### **Ecoregional findings**

- Most freshwater habitats insufficiently or completely unprotected in the national Protected Area Network
- > Established protected areas fragment entire river systems.
- Top threats on island-wide scale are nutrient loading, deforestation and removal of riverside vegetation and invasive species
- Significant opportunities for freshwater conservation, such as protected areas, Ridge-to-Reef initiatives, environmental education and environmental funding are currently under-utilised.
- > Riparian forests are the most degraded or extirpated freshwater community
- Many watersheds and freshwater ecosystems un or under-researched. Up to date information on freshwater biodiversity, practitioners and projects generally absent.
- Insufficient local capacity to assess, plan and implement freshwater biodiversity conservation



### **JERP Conservation Strategy example**

#### 1) Protect Healthy Freshwater Ecosystems

- Explore existing and future mechanisms for protecting entire river corridors (as protected areas or under watershed protection act, development orders, private land conservation)
- Incorporate lower Rio Grande/ Drivers River into wider Blue and John Crow Mountains Protected Area
- Protect from Cockpit Country north into downstream Martha Brae watershed and/or south into Black River watershed.
- Train water resource management and protected area practitioners in freshwater conservation methods.





## JERP Conservation strategy example 2....

- Mitigate or reduce main threats to marine conservation targets at national and site-scale
  - Explore diversification of fishing practices and selective fishing activities towards reducing fishing pressure at specific pilot sites
  - Improve watershed management in 1-2 priority watershed areas to diminish land-based contamination and sedimentation





# Opportunities for strengthening JERP analysis

- Ground-truthing biological and socio-economic information
- Generating baseline information on biodiversity and threats
- Incorporating climate change models into threats analysis.



## **JERP** next steps

- Refine draft conservation areas into a network (In progress).
- Integrate Freshwater, Marine and Terrestrial results (May-June 2006)
- Review results with all stakeholders (Mar-June 2006)
- ➤ Publish results (June August 2006)



## **Main Results and products**

- 1. Framework and methodology for integrated biodiversity conservation planning in Jamaica.
- GIS database of freshwater, marine and terrestrial biodiversity and socio-economic factors
  - (<a href="http://maps.cathalac.org/website/tncmaps/tncmain.html">http://maps.cathalac.org/website/tncmaps/tncmain.html</a>).
- 3. A vision of conservation areas and actions for Jamaica's biodiversity.





## **End**

#### Questions and Comments are welcome.

